翻訳と辞書
Words near each other
・ Lindén
・ Lindóia
・ Lindóia do Sul
・ Lindów, Masovian Voivodeship
・ Lindów, Silesian Voivodeship
・ Lindö
・ Lindö FF
・ Lindø RSC
・ Lindøy
・ Lindøya
・ Line
・ Line (application)
・ LINE (combat system)
・ Line (electrical engineering)
・ Line (formation)
Line (geometry)
・ Line (given name)
・ Line (heraldry)
・ Line (ice hockey)
・ Line (play)
・ Line (poetry)
・ Line (singer)
・ Line (text file)
・ Line (unit)
・ Line 1
・ Line 1 (Almaty)
・ Line 1 (Athens Metro)
・ Line 1 (Budapest Metro)
・ Line 1 (Madrid Metro)
・ Line 1 (Metro Bilbao)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Line (geometry) : ウィキペディア英語版
Line (geometry)

The notion of line or straight line was introduced by ancient mathematicians to represent straight objects (i.e., having no curvature) with negligible width and depth. Lines are an idealization of such objects. Until the 17th century, lines were defined in this manner: "The (or curved ) line is the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which () will leave from its imaginary moving some vestige in length, exempt of any width. () The straight line is that which is equally extended between its points."〔In (rather old) French: "La ligne est la première espece de quantité, laquelle a tant seulement une dimension à sçavoir longitude, sans aucune latitude ni profondité, & n'est autre chose que le flux ou coulement du poinct, lequel () laissera de son mouvement imaginaire quelque vestige en long, exempt de toute latitude. () La ligne droicte est celle qui est également estenduë entre ses poincts." Pages 7 and 8 of ''Les quinze livres des éléments géométriques d'Euclide Megarien, traduits de Grec en François, & augmentez de plusieurs figures & demonstrations, avec la corrections des erreurs commises és autres traductions'', by Pierre Mardele, Lyon, MDCXLV (1645).〕
Euclid described a line as "breadthless length" which "lies equally with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of 19th century (such as non-Euclidean, projective and affine geometry).
In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic geometry, a line in the plane is often defined as the set of points whose coordinates satisfy a given linear equation, but in a more abstract setting, such as incidence geometry, a line may be an independent object, distinct from the set of points which lie on it.
When a geometry is described by a set of axioms, the notion of a line is usually left undefined (a so-called primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry. Thus in differential geometry a line may be interpreted as a geodesic (shortest path between points), while in some projective geometries a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line.
A line segment is a part of a line that is bounded by two distinct end points and contains every point on the line between its end points. Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are coplanar and either do not intersect or are collinear.
==Definitions versus descriptions==
All definitions are ultimately circular in nature since they depend on concepts which must themselves have definitions, a dependence which can not be continued indefinitely without returning to the starting point. To avoid this vicious circle certain concepts must be taken as primitive concepts; terms which are given no definition. In geometry, it is frequently the case that the concept of line is taken as a primitive. In those situations where a line is a defined concept, as in coordinate geometry, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the axioms which they must satisfy.
In a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance it is possible that a ''description'' or ''mental image'' of a primitive notion is provided to give a foundation to build the notion on which would formally be based on the (unstated) axioms. Descriptions of this type may be referred to, by some authors, as definitions in this informal style of presentation. These are not true definitions and could not be used in formal proofs of statements. The "definition" of line in Euclid's Elements falls into this category. Even in the case where a specific geometry is being considered (for example, Euclidean geometry), there is no generally accepted agreement among authors as to what an informal description of a line should be when the subject is not being treated formally.
== Ray ==
Given a line and any point ''A'' on it, we may consider ''A'' as decomposing this line into two parts.
Each such part is called a ray (or half-line) and the point ''A'' is called its ''initial point''. The point A is considered to be a member of the ray.〔On occasion we may consider a ray without its initial point. Such rays are called ''open'' rays, in contrast to the typical ray which would be said to be ''closed''.〕 Intuitively, a ray consists of those points on a line passing through ''A'' and proceeding indefinitely, starting at ''A'', in one direction only along the line. However, in order to use this concept of a ray in proofs a more precise definition is required.
Given distinct points ''A'' and ''B'', they determine a unique ray with initial point ''A''. As two points define a unique line, this ray consists of all the points between ''A'' and ''B'' (including ''A'' and ''B'') and all the points ''C'' on the line through ''A'' and ''B'' such that ''B'' is between ''A'' and ''C''. This is, at times, also expressed as the set of all points ''C'' such that ''A'' is not between ''B'' and ''C''. A point ''D'', on the line determined by ''A'' and ''B'' but not in the ray with initial point ''A'' determined by ''B'', will determine another ray with initial point ''A''. With respect to the ''AB'' ray, the ''AD'' ray is called the ''opposite ray''.
Thus, we would say that two different points, ''A'' and ''B'', define a line and a decomposition of this line into the disjoint union of an open segment and two rays, ''BC'' and ''AD'' (the point ''D'' is not drawn in the diagram, but is to the left of ''A'' on the line ''AB''). These are not opposite rays since they have different initial points.
In Euclidean geometry two rays with a common endpoint form an angle.
The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically Euclidean geometry or affine geometry over an ordered field. On the other hand, rays do not exist in projective geometry nor in a geometry over a non-ordered field, like the complex numbers or any finite field.
In topology, a ray in a space ''X'' is a continuous embedding R+ → ''X''. It is used to define the important concept of end of the space.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Line (geometry)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.